// -*- C++ -*- // Copyright (C) 2008-2019 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /** @file include/condition_variable * This is a Standard C++ Library header. */ #ifndef _GLIBCXX_CONDITION_VARIABLE #define _GLIBCXX_CONDITION_VARIABLE 1 #pragma GCC system_header #if __cplusplus < 201103L # include #else #include #include #include #include #include #include #include #include #include #if defined(_GLIBCXX_HAS_GTHREADS) namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION /** * @defgroup condition_variables Condition Variables * @ingroup concurrency * * Classes for condition_variable support. * @{ */ /// cv_status enum class cv_status { no_timeout, timeout }; /// condition_variable class condition_variable { typedef chrono::system_clock __clock_t; typedef chrono::steady_clock __steady_clock_t; typedef __gthread_cond_t __native_type; #ifdef __GTHREAD_COND_INIT __native_type _M_cond = __GTHREAD_COND_INIT; #else __native_type _M_cond; #endif public: typedef __native_type* native_handle_type; condition_variable() noexcept; ~condition_variable() noexcept; condition_variable(const condition_variable&) = delete; condition_variable& operator=(const condition_variable&) = delete; void notify_one() noexcept; void notify_all() noexcept; void wait(unique_lock& __lock) noexcept; template void wait(unique_lock& __lock, _Predicate __p) { while (!__p()) wait(__lock); } template cv_status wait_until(unique_lock& __lock, const chrono::time_point<__clock_t, _Duration>& __atime) { return __wait_until_impl(__lock, __atime); } template cv_status wait_until(unique_lock& __lock, const chrono::time_point<_Clock, _Duration>& __atime) { // DR 887 - Sync unknown clock to known clock. const typename _Clock::time_point __c_entry = _Clock::now(); const __clock_t::time_point __s_entry = __clock_t::now(); const auto __delta = __atime - __c_entry; const auto __s_atime = __s_entry + __delta; if (__wait_until_impl(__lock, __s_atime) == cv_status::no_timeout) return cv_status::no_timeout; // We got a timeout when measured against __clock_t but // we need to check against the caller-supplied clock // to tell whether we should return a timeout. if (_Clock::now() < __atime) return cv_status::no_timeout; return cv_status::timeout; } template bool wait_until(unique_lock& __lock, const chrono::time_point<_Clock, _Duration>& __atime, _Predicate __p) { while (!__p()) if (wait_until(__lock, __atime) == cv_status::timeout) return __p(); return true; } template cv_status wait_for(unique_lock& __lock, const chrono::duration<_Rep, _Period>& __rtime) { using __dur = typename __steady_clock_t::duration; auto __reltime = chrono::duration_cast<__dur>(__rtime); if (__reltime < __rtime) ++__reltime; return wait_until(__lock, __steady_clock_t::now() + __reltime); } template bool wait_for(unique_lock& __lock, const chrono::duration<_Rep, _Period>& __rtime, _Predicate __p) { using __dur = typename __steady_clock_t::duration; auto __reltime = chrono::duration_cast<__dur>(__rtime); if (__reltime < __rtime) ++__reltime; return wait_until(__lock, __steady_clock_t::now() + __reltime, std::move(__p)); } native_handle_type native_handle() { return &_M_cond; } private: template cv_status __wait_until_impl(unique_lock& __lock, const chrono::time_point<__clock_t, _Dur>& __atime) { auto __s = chrono::time_point_cast(__atime); auto __ns = chrono::duration_cast(__atime - __s); __gthread_time_t __ts = { static_cast(__s.time_since_epoch().count()), static_cast(__ns.count()) }; __gthread_cond_timedwait(&_M_cond, __lock.mutex()->native_handle(), &__ts); return (__clock_t::now() < __atime ? cv_status::no_timeout : cv_status::timeout); } }; void notify_all_at_thread_exit(condition_variable&, unique_lock); struct __at_thread_exit_elt { __at_thread_exit_elt* _M_next; void (*_M_cb)(void*); }; inline namespace _V2 { /// condition_variable_any // Like above, but mutex is not required to have try_lock. class condition_variable_any { typedef chrono::system_clock __clock_t; condition_variable _M_cond; shared_ptr _M_mutex; // scoped unlock - unlocks in ctor, re-locks in dtor template struct _Unlock { explicit _Unlock(_Lock& __lk) : _M_lock(__lk) { __lk.unlock(); } ~_Unlock() noexcept(false) { if (uncaught_exception()) { __try { _M_lock.lock(); } __catch(const __cxxabiv1::__forced_unwind&) { __throw_exception_again; } __catch(...) { } } else _M_lock.lock(); } _Unlock(const _Unlock&) = delete; _Unlock& operator=(const _Unlock&) = delete; _Lock& _M_lock; }; public: condition_variable_any() : _M_mutex(std::make_shared()) { } ~condition_variable_any() = default; condition_variable_any(const condition_variable_any&) = delete; condition_variable_any& operator=(const condition_variable_any&) = delete; void notify_one() noexcept { lock_guard __lock(*_M_mutex); _M_cond.notify_one(); } void notify_all() noexcept { lock_guard __lock(*_M_mutex); _M_cond.notify_all(); } template void wait(_Lock& __lock) { shared_ptr __mutex = _M_mutex; unique_lock __my_lock(*__mutex); _Unlock<_Lock> __unlock(__lock); // *__mutex must be unlocked before re-locking __lock so move // ownership of *__mutex lock to an object with shorter lifetime. unique_lock __my_lock2(std::move(__my_lock)); _M_cond.wait(__my_lock2); } template void wait(_Lock& __lock, _Predicate __p) { while (!__p()) wait(__lock); } template cv_status wait_until(_Lock& __lock, const chrono::time_point<_Clock, _Duration>& __atime) { shared_ptr __mutex = _M_mutex; unique_lock __my_lock(*__mutex); _Unlock<_Lock> __unlock(__lock); // *__mutex must be unlocked before re-locking __lock so move // ownership of *__mutex lock to an object with shorter lifetime. unique_lock __my_lock2(std::move(__my_lock)); return _M_cond.wait_until(__my_lock2, __atime); } template bool wait_until(_Lock& __lock, const chrono::time_point<_Clock, _Duration>& __atime, _Predicate __p) { while (!__p()) if (wait_until(__lock, __atime) == cv_status::timeout) return __p(); return true; } template cv_status wait_for(_Lock& __lock, const chrono::duration<_Rep, _Period>& __rtime) { return wait_until(__lock, __clock_t::now() + __rtime); } template bool wait_for(_Lock& __lock, const chrono::duration<_Rep, _Period>& __rtime, _Predicate __p) { return wait_until(__lock, __clock_t::now() + __rtime, std::move(__p)); } }; } // end inline namespace /// @} group condition_variables _GLIBCXX_END_NAMESPACE_VERSION } // namespace #endif // _GLIBCXX_HAS_GTHREADS #endif // C++11 #endif // _GLIBCXX_CONDITION_VARIABLE