// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime // This file contains the implementation of Go channels. // Invariants: // At least one of c.sendq and c.recvq is empty, // except for the case of an unbuffered channel with a single goroutine // blocked on it for both sending and receiving using a select statement, // in which case the length of c.sendq and c.recvq is limited only by the // size of the select statement. // // For buffered channels, also: // c.qcount > 0 implies that c.recvq is empty. // c.qcount < c.dataqsiz implies that c.sendq is empty. import ( "runtime/internal/atomic" "runtime/internal/math" "unsafe" ) // For gccgo, use go:linkname to rename compiler-called functions to // themselves, so that the compiler will export them. // //go:linkname makechan runtime.makechan //go:linkname makechan64 runtime.makechan64 //go:linkname chansend1 runtime.chansend1 //go:linkname chanrecv1 runtime.chanrecv1 //go:linkname chanrecv2 runtime.chanrecv2 //go:linkname closechan runtime.closechan const ( maxAlign = 8 hchanSize = unsafe.Sizeof(hchan{}) + uintptr(-int(unsafe.Sizeof(hchan{}))&(maxAlign-1)) debugChan = false ) type hchan struct { qcount uint // total data in the queue dataqsiz uint // size of the circular queue buf unsafe.Pointer // points to an array of dataqsiz elements elemsize uint16 closed uint32 elemtype *_type // element type sendx uint // send index recvx uint // receive index recvq waitq // list of recv waiters sendq waitq // list of send waiters // lock protects all fields in hchan, as well as several // fields in sudogs blocked on this channel. // // Do not change another G's status while holding this lock // (in particular, do not ready a G), as this can deadlock // with stack shrinking. lock mutex } type waitq struct { first *sudog last *sudog } //go:linkname reflect_makechan reflect.makechan func reflect_makechan(t *chantype, size int) *hchan { return makechan(t, size) } func makechan64(t *chantype, size int64) *hchan { if int64(int(size)) != size { panic(plainError("makechan: size out of range")) } return makechan(t, int(size)) } func makechan(t *chantype, size int) *hchan { elem := t.elem // compiler checks this but be safe. if elem.size >= 1<<16 { throw("makechan: invalid channel element type") } if hchanSize%maxAlign != 0 || elem.align > maxAlign { throw("makechan: bad alignment") } mem, overflow := math.MulUintptr(elem.size, uintptr(size)) if overflow || mem > maxAlloc-hchanSize || size < 0 { panic(plainError("makechan: size out of range")) } // Hchan does not contain pointers interesting for GC when elements stored in buf do not contain pointers. // buf points into the same allocation, elemtype is persistent. // SudoG's are referenced from their owning thread so they can't be collected. // TODO(dvyukov,rlh): Rethink when collector can move allocated objects. var c *hchan switch { case mem == 0: // Queue or element size is zero. c = (*hchan)(mallocgc(hchanSize, nil, true)) // Race detector uses this location for synchronization. c.buf = c.raceaddr() case elem.kind&kindNoPointers != 0: // Elements do not contain pointers. // Allocate hchan and buf in one call. c = (*hchan)(mallocgc(hchanSize+mem, nil, true)) c.buf = add(unsafe.Pointer(c), hchanSize) default: // Elements contain pointers. c = new(hchan) c.buf = mallocgc(mem, elem, true) } c.elemsize = uint16(elem.size) c.elemtype = elem c.dataqsiz = uint(size) if debugChan { print("makechan: chan=", c, "; elemsize=", elem.size, "; dataqsiz=", size, "\n") } return c } // chanbuf(c, i) is pointer to the i'th slot in the buffer. func chanbuf(c *hchan, i uint) unsafe.Pointer { return add(c.buf, uintptr(i)*uintptr(c.elemsize)) } // entry point for c <- x from compiled code //go:nosplit func chansend1(c *hchan, elem unsafe.Pointer) { chansend(c, elem, true, getcallerpc()) } /* * generic single channel send/recv * If block is not nil, * then the protocol will not * sleep but return if it could * not complete. * * sleep can wake up with g.param == nil * when a channel involved in the sleep has * been closed. it is easiest to loop and re-run * the operation; we'll see that it's now closed. */ func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool { // Check preemption, since unlike gc we don't check on every call. if getg().preempt { checkPreempt() } if c == nil { if !block { return false } gopark(nil, nil, waitReasonChanSendNilChan, traceEvGoStop, 2) throw("unreachable") } if debugChan { print("chansend: chan=", c, "\n") } if raceenabled { racereadpc(c.raceaddr(), callerpc, funcPC(chansend)) } // Fast path: check for failed non-blocking operation without acquiring the lock. // // After observing that the channel is not closed, we observe that the channel is // not ready for sending. Each of these observations is a single word-sized read // (first c.closed and second c.recvq.first or c.qcount depending on kind of channel). // Because a closed channel cannot transition from 'ready for sending' to // 'not ready for sending', even if the channel is closed between the two observations, // they imply a moment between the two when the channel was both not yet closed // and not ready for sending. We behave as if we observed the channel at that moment, // and report that the send cannot proceed. // // It is okay if the reads are reordered here: if we observe that the channel is not // ready for sending and then observe that it is not closed, that implies that the // channel wasn't closed during the first observation. if !block && c.closed == 0 && ((c.dataqsiz == 0 && c.recvq.first == nil) || (c.dataqsiz > 0 && c.qcount == c.dataqsiz)) { return false } var t0 int64 if blockprofilerate > 0 { t0 = cputicks() } lock(&c.lock) if c.closed != 0 { unlock(&c.lock) panic(plainError("send on closed channel")) } if sg := c.recvq.dequeue(); sg != nil { // Found a waiting receiver. We pass the value we want to send // directly to the receiver, bypassing the channel buffer (if any). send(c, sg, ep, func() { unlock(&c.lock) }, 3) return true } if c.qcount < c.dataqsiz { // Space is available in the channel buffer. Enqueue the element to send. qp := chanbuf(c, c.sendx) if raceenabled { raceacquire(qp) racerelease(qp) } typedmemmove(c.elemtype, qp, ep) c.sendx++ if c.sendx == c.dataqsiz { c.sendx = 0 } c.qcount++ unlock(&c.lock) return true } if !block { unlock(&c.lock) return false } // Block on the channel. Some receiver will complete our operation for us. gp := getg() mysg := acquireSudog() mysg.releasetime = 0 if t0 != 0 { mysg.releasetime = -1 } // No stack splits between assigning elem and enqueuing mysg // on gp.waiting where copystack can find it. mysg.elem = ep mysg.waitlink = nil mysg.g = gp mysg.isSelect = false mysg.c = c gp.waiting = mysg gp.param = nil c.sendq.enqueue(mysg) goparkunlock(&c.lock, waitReasonChanSend, traceEvGoBlockSend, 3) // Ensure the value being sent is kept alive until the // receiver copies it out. The sudog has a pointer to the // stack object, but sudogs aren't considered as roots of the // stack tracer. KeepAlive(ep) // someone woke us up. if mysg != gp.waiting { throw("G waiting list is corrupted") } gp.waiting = nil if gp.param == nil { if c.closed == 0 { throw("chansend: spurious wakeup") } panic(plainError("send on closed channel")) } gp.param = nil if mysg.releasetime > 0 { blockevent(mysg.releasetime-t0, 2) } mysg.c = nil releaseSudog(mysg) return true } // send processes a send operation on an empty channel c. // The value ep sent by the sender is copied to the receiver sg. // The receiver is then woken up to go on its merry way. // Channel c must be empty and locked. send unlocks c with unlockf. // sg must already be dequeued from c. // ep must be non-nil and point to the heap or the caller's stack. func send(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func(), skip int) { if raceenabled { if c.dataqsiz == 0 { racesync(c, sg) } else { // Pretend we go through the buffer, even though // we copy directly. Note that we need to increment // the head/tail locations only when raceenabled. qp := chanbuf(c, c.recvx) raceacquire(qp) racerelease(qp) raceacquireg(sg.g, qp) racereleaseg(sg.g, qp) c.recvx++ if c.recvx == c.dataqsiz { c.recvx = 0 } c.sendx = c.recvx // c.sendx = (c.sendx+1) % c.dataqsiz } } if sg.elem != nil { sendDirect(c.elemtype, sg, ep) sg.elem = nil } gp := sg.g unlockf() gp.param = unsafe.Pointer(sg) if sg.releasetime != 0 { sg.releasetime = cputicks() } goready(gp, skip+1) } // Sends and receives on unbuffered or empty-buffered channels are the // only operations where one running goroutine writes to the stack of // another running goroutine. The GC assumes that stack writes only // happen when the goroutine is running and are only done by that // goroutine. Using a write barrier is sufficient to make up for // violating that assumption, but the write barrier has to work. // typedmemmove will call bulkBarrierPreWrite, but the target bytes // are not in the heap, so that will not help. We arrange to call // memmove and typeBitsBulkBarrier instead. func sendDirect(t *_type, sg *sudog, src unsafe.Pointer) { // src is on our stack, dst is a slot on another stack. // Once we read sg.elem out of sg, it will no longer // be updated if the destination's stack gets copied (shrunk). // So make sure that no preemption points can happen between read & use. dst := sg.elem typeBitsBulkBarrier(t, uintptr(dst), uintptr(src), t.size) // No need for cgo write barrier checks because dst is always // Go memory. memmove(dst, src, t.size) } func recvDirect(t *_type, sg *sudog, dst unsafe.Pointer) { // dst is on our stack or the heap, src is on another stack. // The channel is locked, so src will not move during this // operation. src := sg.elem typeBitsBulkBarrier(t, uintptr(dst), uintptr(src), t.size) memmove(dst, src, t.size) } func closechan(c *hchan) { if c == nil { panic(plainError("close of nil channel")) } lock(&c.lock) if c.closed != 0 { unlock(&c.lock) panic(plainError("close of closed channel")) } if raceenabled { callerpc := getcallerpc() racewritepc(c.raceaddr(), callerpc, funcPC(closechan)) racerelease(c.raceaddr()) } c.closed = 1 var glist gList // release all readers for { sg := c.recvq.dequeue() if sg == nil { break } if sg.elem != nil { typedmemclr(c.elemtype, sg.elem) sg.elem = nil } if sg.releasetime != 0 { sg.releasetime = cputicks() } gp := sg.g gp.param = nil if raceenabled { raceacquireg(gp, c.raceaddr()) } glist.push(gp) } // release all writers (they will panic) for { sg := c.sendq.dequeue() if sg == nil { break } sg.elem = nil if sg.releasetime != 0 { sg.releasetime = cputicks() } gp := sg.g gp.param = nil if raceenabled { raceacquireg(gp, c.raceaddr()) } glist.push(gp) } unlock(&c.lock) // Ready all Gs now that we've dropped the channel lock. for !glist.empty() { gp := glist.pop() gp.schedlink = 0 goready(gp, 3) } } // entry points for <- c from compiled code //go:nosplit func chanrecv1(c *hchan, elem unsafe.Pointer) { chanrecv(c, elem, true) } //go:nosplit func chanrecv2(c *hchan, elem unsafe.Pointer) (received bool) { _, received = chanrecv(c, elem, true) return } // chanrecv receives on channel c and writes the received data to ep. // ep may be nil, in which case received data is ignored. // If block == false and no elements are available, returns (false, false). // Otherwise, if c is closed, zeros *ep and returns (true, false). // Otherwise, fills in *ep with an element and returns (true, true). // A non-nil ep must point to the heap or the caller's stack. func chanrecv(c *hchan, ep unsafe.Pointer, block bool) (selected, received bool) { // raceenabled: don't need to check ep, as it is always on the stack // or is new memory allocated by reflect. if debugChan { print("chanrecv: chan=", c, "\n") } // Check preemption, since unlike gc we don't check on every call. if getg().preempt { checkPreempt() } if c == nil { if !block { return } gopark(nil, nil, waitReasonChanReceiveNilChan, traceEvGoStop, 2) throw("unreachable") } // Fast path: check for failed non-blocking operation without acquiring the lock. // // After observing that the channel is not ready for receiving, we observe that the // channel is not closed. Each of these observations is a single word-sized read // (first c.sendq.first or c.qcount, and second c.closed). // Because a channel cannot be reopened, the later observation of the channel // being not closed implies that it was also not closed at the moment of the // first observation. We behave as if we observed the channel at that moment // and report that the receive cannot proceed. // // The order of operations is important here: reversing the operations can lead to // incorrect behavior when racing with a close. if !block && (c.dataqsiz == 0 && c.sendq.first == nil || c.dataqsiz > 0 && atomic.Loaduint(&c.qcount) == 0) && atomic.Load(&c.closed) == 0 { return } var t0 int64 if blockprofilerate > 0 { t0 = cputicks() } lock(&c.lock) if c.closed != 0 && c.qcount == 0 { if raceenabled { raceacquire(c.raceaddr()) } unlock(&c.lock) if ep != nil { typedmemclr(c.elemtype, ep) } return true, false } if sg := c.sendq.dequeue(); sg != nil { // Found a waiting sender. If buffer is size 0, receive value // directly from sender. Otherwise, receive from head of queue // and add sender's value to the tail of the queue (both map to // the same buffer slot because the queue is full). recv(c, sg, ep, func() { unlock(&c.lock) }, 3) return true, true } if c.qcount > 0 { // Receive directly from queue qp := chanbuf(c, c.recvx) if raceenabled { raceacquire(qp) racerelease(qp) } if ep != nil { typedmemmove(c.elemtype, ep, qp) } typedmemclr(c.elemtype, qp) c.recvx++ if c.recvx == c.dataqsiz { c.recvx = 0 } c.qcount-- unlock(&c.lock) return true, true } if !block { unlock(&c.lock) return false, false } // no sender available: block on this channel. gp := getg() mysg := acquireSudog() mysg.releasetime = 0 if t0 != 0 { mysg.releasetime = -1 } // No stack splits between assigning elem and enqueuing mysg // on gp.waiting where copystack can find it. mysg.elem = ep mysg.waitlink = nil gp.waiting = mysg mysg.g = gp mysg.isSelect = false mysg.c = c gp.param = nil c.recvq.enqueue(mysg) goparkunlock(&c.lock, waitReasonChanReceive, traceEvGoBlockRecv, 3) // someone woke us up if mysg != gp.waiting { throw("G waiting list is corrupted") } gp.waiting = nil if mysg.releasetime > 0 { blockevent(mysg.releasetime-t0, 2) } closed := gp.param == nil gp.param = nil mysg.c = nil releaseSudog(mysg) return true, !closed } // recv processes a receive operation on a full channel c. // There are 2 parts: // 1) The value sent by the sender sg is put into the channel // and the sender is woken up to go on its merry way. // 2) The value received by the receiver (the current G) is // written to ep. // For synchronous channels, both values are the same. // For asynchronous channels, the receiver gets its data from // the channel buffer and the sender's data is put in the // channel buffer. // Channel c must be full and locked. recv unlocks c with unlockf. // sg must already be dequeued from c. // A non-nil ep must point to the heap or the caller's stack. func recv(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func(), skip int) { if c.dataqsiz == 0 { if raceenabled { racesync(c, sg) } if ep != nil { // copy data from sender recvDirect(c.elemtype, sg, ep) } } else { // Queue is full. Take the item at the // head of the queue. Make the sender enqueue // its item at the tail of the queue. Since the // queue is full, those are both the same slot. qp := chanbuf(c, c.recvx) if raceenabled { raceacquire(qp) racerelease(qp) raceacquireg(sg.g, qp) racereleaseg(sg.g, qp) } // copy data from queue to receiver if ep != nil { typedmemmove(c.elemtype, ep, qp) } // copy data from sender to queue typedmemmove(c.elemtype, qp, sg.elem) c.recvx++ if c.recvx == c.dataqsiz { c.recvx = 0 } c.sendx = c.recvx // c.sendx = (c.sendx+1) % c.dataqsiz } sg.elem = nil gp := sg.g unlockf() gp.param = unsafe.Pointer(sg) if sg.releasetime != 0 { sg.releasetime = cputicks() } goready(gp, skip+1) } // compiler implements // // select { // case c <- v: // ... foo // default: // ... bar // } // // as // // if selectnbsend(c, v) { // ... foo // } else { // ... bar // } // func selectnbsend(c *hchan, elem unsafe.Pointer) (selected bool) { return chansend(c, elem, false, getcallerpc()) } // compiler implements // // select { // case v = <-c: // ... foo // default: // ... bar // } // // as // // if selectnbrecv(&v, c) { // ... foo // } else { // ... bar // } // func selectnbrecv(elem unsafe.Pointer, c *hchan) (selected bool) { selected, _ = chanrecv(c, elem, false) return } // compiler implements // // select { // case v, ok = <-c: // ... foo // default: // ... bar // } // // as // // if c != nil && selectnbrecv2(&v, &ok, c) { // ... foo // } else { // ... bar // } // func selectnbrecv2(elem unsafe.Pointer, received *bool, c *hchan) (selected bool) { // TODO(khr): just return 2 values from this function, now that it is in Go. selected, *received = chanrecv(c, elem, false) return } //go:linkname reflect_chansend reflect.chansend func reflect_chansend(c *hchan, elem unsafe.Pointer, nb bool) (selected bool) { return chansend(c, elem, !nb, getcallerpc()) } //go:linkname reflect_chanrecv reflect.chanrecv func reflect_chanrecv(c *hchan, nb bool, elem unsafe.Pointer) (selected bool, received bool) { return chanrecv(c, elem, !nb) } //go:linkname reflect_chanlen reflect.chanlen func reflect_chanlen(c *hchan) int { if c == nil { return 0 } return int(c.qcount) } //go:linkname reflect_chancap reflect.chancap func reflect_chancap(c *hchan) int { if c == nil { return 0 } return int(c.dataqsiz) } //go:linkname reflect_chanclose reflect.chanclose func reflect_chanclose(c *hchan) { closechan(c) } func (q *waitq) enqueue(sgp *sudog) { sgp.next = nil x := q.last if x == nil { sgp.prev = nil q.first = sgp q.last = sgp return } sgp.prev = x x.next = sgp q.last = sgp } func (q *waitq) dequeue() *sudog { for { sgp := q.first if sgp == nil { return nil } y := sgp.next if y == nil { q.first = nil q.last = nil } else { y.prev = nil q.first = y sgp.next = nil // mark as removed (see dequeueSudog) } // if a goroutine was put on this queue because of a // select, there is a small window between the goroutine // being woken up by a different case and it grabbing the // channel locks. Once it has the lock // it removes itself from the queue, so we won't see it after that. // We use a flag in the G struct to tell us when someone // else has won the race to signal this goroutine but the goroutine // hasn't removed itself from the queue yet. if sgp.isSelect { if !atomic.Cas(&sgp.g.selectDone, 0, 1) { continue } } return sgp } } func (c *hchan) raceaddr() unsafe.Pointer { // Treat read-like and write-like operations on the channel to // happen at this address. Avoid using the address of qcount // or dataqsiz, because the len() and cap() builtins read // those addresses, and we don't want them racing with // operations like close(). return unsafe.Pointer(&c.buf) } func racesync(c *hchan, sg *sudog) { racerelease(chanbuf(c, 0)) raceacquireg(sg.g, chanbuf(c, 0)) racereleaseg(sg.g, chanbuf(c, 0)) raceacquire(chanbuf(c, 0)) }