// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. /* * Line tables */ package gosym import ( "bytes" "encoding/binary" "sync" ) // A LineTable is a data structure mapping program counters to line numbers. // // In Go 1.1 and earlier, each function (represented by a Func) had its own LineTable, // and the line number corresponded to a numbering of all source lines in the // program, across all files. That absolute line number would then have to be // converted separately to a file name and line number within the file. // // In Go 1.2, the format of the data changed so that there is a single LineTable // for the entire program, shared by all Funcs, and there are no absolute line // numbers, just line numbers within specific files. // // For the most part, LineTable's methods should be treated as an internal // detail of the package; callers should use the methods on Table instead. type LineTable struct { Data []byte PC uint64 Line int // Go 1.2 state mu sync.Mutex go12 int // is this in Go 1.2 format? -1 no, 0 unknown, 1 yes binary binary.ByteOrder quantum uint32 ptrsize uint32 functab []byte nfunctab uint32 filetab []byte nfiletab uint32 fileMap map[string]uint32 strings map[uint32]string // interned substrings of Data, keyed by offset } // NOTE(rsc): This is wrong for GOARCH=arm, which uses a quantum of 4, // but we have no idea whether we're using arm or not. This only // matters in the old (pre-Go 1.2) symbol table format, so it's not worth // fixing. const oldQuantum = 1 func (t *LineTable) parse(targetPC uint64, targetLine int) (b []byte, pc uint64, line int) { // The PC/line table can be thought of as a sequence of // * // batches. Each update batch results in a (pc, line) pair, // where line applies to every PC from pc up to but not // including the pc of the next pair. // // Here we process each update individually, which simplifies // the code, but makes the corner cases more confusing. b, pc, line = t.Data, t.PC, t.Line for pc <= targetPC && line != targetLine && len(b) > 0 { code := b[0] b = b[1:] switch { case code == 0: if len(b) < 4 { b = b[0:0] break } val := binary.BigEndian.Uint32(b) b = b[4:] line += int(val) case code <= 64: line += int(code) case code <= 128: line -= int(code - 64) default: pc += oldQuantum * uint64(code-128) continue } pc += oldQuantum } return b, pc, line } func (t *LineTable) slice(pc uint64) *LineTable { data, pc, line := t.parse(pc, -1) return &LineTable{Data: data, PC: pc, Line: line} } // PCToLine returns the line number for the given program counter. // Callers should use Table's PCToLine method instead. func (t *LineTable) PCToLine(pc uint64) int { if t.isGo12() { return t.go12PCToLine(pc) } _, _, line := t.parse(pc, -1) return line } // LineToPC returns the program counter for the given line number, // considering only program counters before maxpc. // Callers should use Table's LineToPC method instead. func (t *LineTable) LineToPC(line int, maxpc uint64) uint64 { if t.isGo12() { return 0 } _, pc, line1 := t.parse(maxpc, line) if line1 != line { return 0 } // Subtract quantum from PC to account for post-line increment return pc - oldQuantum } // NewLineTable returns a new PC/line table // corresponding to the encoded data. // Text must be the start address of the // corresponding text segment. func NewLineTable(data []byte, text uint64) *LineTable { return &LineTable{Data: data, PC: text, Line: 0, strings: make(map[uint32]string)} } // Go 1.2 symbol table format. // See golang.org/s/go12symtab. // // A general note about the methods here: rather than try to avoid // index out of bounds errors, we trust Go to detect them, and then // we recover from the panics and treat them as indicative of a malformed // or incomplete table. // // The methods called by symtab.go, which begin with "go12" prefixes, // are expected to have that recovery logic. // isGo12 reports whether this is a Go 1.2 (or later) symbol table. func (t *LineTable) isGo12() bool { t.go12Init() return t.go12 == 1 } const go12magic = 0xfffffffb // uintptr returns the pointer-sized value encoded at b. // The pointer size is dictated by the table being read. func (t *LineTable) uintptr(b []byte) uint64 { if t.ptrsize == 4 { return uint64(t.binary.Uint32(b)) } return t.binary.Uint64(b) } // go12init initializes the Go 1.2 metadata if t is a Go 1.2 symbol table. func (t *LineTable) go12Init() { t.mu.Lock() defer t.mu.Unlock() if t.go12 != 0 { return } defer func() { // If we panic parsing, assume it's not a Go 1.2 symbol table. recover() }() // Check header: 4-byte magic, two zeros, pc quantum, pointer size. t.go12 = -1 // not Go 1.2 until proven otherwise if len(t.Data) < 16 || t.Data[4] != 0 || t.Data[5] != 0 || (t.Data[6] != 1 && t.Data[6] != 2 && t.Data[6] != 4) || // pc quantum (t.Data[7] != 4 && t.Data[7] != 8) { // pointer size return } switch uint32(go12magic) { case binary.LittleEndian.Uint32(t.Data): t.binary = binary.LittleEndian case binary.BigEndian.Uint32(t.Data): t.binary = binary.BigEndian default: return } t.quantum = uint32(t.Data[6]) t.ptrsize = uint32(t.Data[7]) t.nfunctab = uint32(t.uintptr(t.Data[8:])) t.functab = t.Data[8+t.ptrsize:] functabsize := t.nfunctab*2*t.ptrsize + t.ptrsize fileoff := t.binary.Uint32(t.functab[functabsize:]) t.functab = t.functab[:functabsize] t.filetab = t.Data[fileoff:] t.nfiletab = t.binary.Uint32(t.filetab) t.filetab = t.filetab[:t.nfiletab*4] t.go12 = 1 // so far so good } // go12Funcs returns a slice of Funcs derived from the Go 1.2 pcln table. func (t *LineTable) go12Funcs() []Func { // Assume it is malformed and return nil on error. defer func() { recover() }() n := len(t.functab) / int(t.ptrsize) / 2 funcs := make([]Func, n) for i := range funcs { f := &funcs[i] f.Entry = t.uintptr(t.functab[2*i*int(t.ptrsize):]) f.End = t.uintptr(t.functab[(2*i+2)*int(t.ptrsize):]) info := t.Data[t.uintptr(t.functab[(2*i+1)*int(t.ptrsize):]):] f.LineTable = t f.FrameSize = int(t.binary.Uint32(info[t.ptrsize+2*4:])) f.Sym = &Sym{ Value: f.Entry, Type: 'T', Name: t.string(t.binary.Uint32(info[t.ptrsize:])), GoType: 0, Func: f, } } return funcs } // findFunc returns the func corresponding to the given program counter. func (t *LineTable) findFunc(pc uint64) []byte { if pc < t.uintptr(t.functab) || pc >= t.uintptr(t.functab[len(t.functab)-int(t.ptrsize):]) { return nil } // The function table is a list of 2*nfunctab+1 uintptrs, // alternating program counters and offsets to func structures. f := t.functab nf := t.nfunctab for nf > 0 { m := nf / 2 fm := f[2*t.ptrsize*m:] if t.uintptr(fm) <= pc && pc < t.uintptr(fm[2*t.ptrsize:]) { return t.Data[t.uintptr(fm[t.ptrsize:]):] } else if pc < t.uintptr(fm) { nf = m } else { f = f[(m+1)*2*t.ptrsize:] nf -= m + 1 } } return nil } // readvarint reads, removes, and returns a varint from *pp. func (t *LineTable) readvarint(pp *[]byte) uint32 { var v, shift uint32 p := *pp for shift = 0; ; shift += 7 { b := p[0] p = p[1:] v |= (uint32(b) & 0x7F) << shift if b&0x80 == 0 { break } } *pp = p return v } // string returns a Go string found at off. func (t *LineTable) string(off uint32) string { if s, ok := t.strings[off]; ok { return s } i := bytes.IndexByte(t.Data[off:], 0) s := string(t.Data[off : off+uint32(i)]) t.strings[off] = s return s } // step advances to the next pc, value pair in the encoded table. func (t *LineTable) step(p *[]byte, pc *uint64, val *int32, first bool) bool { uvdelta := t.readvarint(p) if uvdelta == 0 && !first { return false } if uvdelta&1 != 0 { uvdelta = ^(uvdelta >> 1) } else { uvdelta >>= 1 } vdelta := int32(uvdelta) pcdelta := t.readvarint(p) * t.quantum *pc += uint64(pcdelta) *val += vdelta return true } // pcvalue reports the value associated with the target pc. // off is the offset to the beginning of the pc-value table, // and entry is the start PC for the corresponding function. func (t *LineTable) pcvalue(off uint32, entry, targetpc uint64) int32 { p := t.Data[off:] val := int32(-1) pc := entry for t.step(&p, &pc, &val, pc == entry) { if targetpc < pc { return val } } return -1 } // findFileLine scans one function in the binary looking for a // program counter in the given file on the given line. // It does so by running the pc-value tables mapping program counter // to file number. Since most functions come from a single file, these // are usually short and quick to scan. If a file match is found, then the // code goes to the expense of looking for a simultaneous line number match. func (t *LineTable) findFileLine(entry uint64, filetab, linetab uint32, filenum, line int32) uint64 { if filetab == 0 || linetab == 0 { return 0 } fp := t.Data[filetab:] fl := t.Data[linetab:] fileVal := int32(-1) filePC := entry lineVal := int32(-1) linePC := entry fileStartPC := filePC for t.step(&fp, &filePC, &fileVal, filePC == entry) { if fileVal == filenum && fileStartPC < filePC { // fileVal is in effect starting at fileStartPC up to // but not including filePC, and it's the file we want. // Run the PC table looking for a matching line number // or until we reach filePC. lineStartPC := linePC for linePC < filePC && t.step(&fl, &linePC, &lineVal, linePC == entry) { // lineVal is in effect until linePC, and lineStartPC < filePC. if lineVal == line { if fileStartPC <= lineStartPC { return lineStartPC } if fileStartPC < linePC { return fileStartPC } } lineStartPC = linePC } } fileStartPC = filePC } return 0 } // go12PCToLine maps program counter to line number for the Go 1.2 pcln table. func (t *LineTable) go12PCToLine(pc uint64) (line int) { defer func() { if recover() != nil { line = -1 } }() f := t.findFunc(pc) if f == nil { return -1 } entry := t.uintptr(f) linetab := t.binary.Uint32(f[t.ptrsize+5*4:]) return int(t.pcvalue(linetab, entry, pc)) } // go12PCToFile maps program counter to file name for the Go 1.2 pcln table. func (t *LineTable) go12PCToFile(pc uint64) (file string) { defer func() { if recover() != nil { file = "" } }() f := t.findFunc(pc) if f == nil { return "" } entry := t.uintptr(f) filetab := t.binary.Uint32(f[t.ptrsize+4*4:]) fno := t.pcvalue(filetab, entry, pc) if fno <= 0 { return "" } return t.string(t.binary.Uint32(t.filetab[4*fno:])) } // go12LineToPC maps a (file, line) pair to a program counter for the Go 1.2 pcln table. func (t *LineTable) go12LineToPC(file string, line int) (pc uint64) { defer func() { if recover() != nil { pc = 0 } }() t.initFileMap() filenum := t.fileMap[file] if filenum == 0 { return 0 } // Scan all functions. // If this turns out to be a bottleneck, we could build a map[int32][]int32 // mapping file number to a list of functions with code from that file. for i := uint32(0); i < t.nfunctab; i++ { f := t.Data[t.uintptr(t.functab[2*t.ptrsize*i+t.ptrsize:]):] entry := t.uintptr(f) filetab := t.binary.Uint32(f[t.ptrsize+4*4:]) linetab := t.binary.Uint32(f[t.ptrsize+5*4:]) pc := t.findFileLine(entry, filetab, linetab, int32(filenum), int32(line)) if pc != 0 { return pc } } return 0 } // initFileMap initializes the map from file name to file number. func (t *LineTable) initFileMap() { t.mu.Lock() defer t.mu.Unlock() if t.fileMap != nil { return } m := make(map[string]uint32) for i := uint32(1); i < t.nfiletab; i++ { s := t.string(t.binary.Uint32(t.filetab[4*i:])) m[s] = i } t.fileMap = m } // go12MapFiles adds to m a key for every file in the Go 1.2 LineTable. // Every key maps to obj. That's not a very interesting map, but it provides // a way for callers to obtain the list of files in the program. func (t *LineTable) go12MapFiles(m map[string]*Obj, obj *Obj) { defer func() { recover() }() t.initFileMap() for file := range t.fileMap { m[file] = obj } }